nCr 計算器

分類:統計學

計算組合 (nCr)、排列 (nPr)、階乘及其他相關值。此計算器幫助解決機率、統計和組合問題。

輸入值

集合中不同項目的數量
從集合中選擇的項目數量
如果項目可以使用多於一次,請選擇此項
組合 (nCr) 公式:
C(n, r) = n! / (r! × (n − r)!)

排列 (nPr) 公式:
P(n, r) = n! / (n − r)!

允許重複的組合:
C(n + r − 1, r) = (n + r − 1)! / (r! × (n − 1)!)

允許重複的排列:
nr

什麼是 nCr 組合計算器?

nCr 組合計算器是一個實用的工具,用於解決涉及組合、排列和階乘的問題。它對於學生、教師和從事概率及統計分析的專業人士特別有用。無論您是在計算從一組中選擇項目的方式,還是計算不同的可能排列,這個工具都能節省時間並提高準確性。

為什麼使用這個計算器?

這個計算器作為:

  • 統計工具,簡化 組合分析 和排列
  • 概率和統計助手,用於評估機會和結果
  • 排列和組合指南,用於結構化問題解決
  • 統計計算資源,在使用基於階乘的公式時
  • 數據分析助手,用於解釋調查、遊戲或實驗設計中的選擇

如何使用計算器

  1. n欄位中輸入項目的總數(例如:10)。
  2. r欄位中輸入要選擇的項目數(例如:4)。
  3. 如果允許重複(項目可以選擇多次),請勾選「允許重複」框。
  4. 點擊「計算」以查看結果。
  5. 檢查組合、排列、階乘等的值。
  6. 點擊「重置」以清除表單並嘗試新值。

它計算什麼?

計算器立即提供多個輸出:

  • 組合 (nCr): 當順序不重要時選擇項目的方式數
  • 排列 (nPr): 當順序重要時排列項目的方式數
  • 階乘: 計算 nCr 和 nPr 值的關鍵組件
  • 允許重複: 當項目可以在選擇中重複使用時的結果
  • 二項係數: 也稱為 nCr,對於概率分佈非常有用
  • 總排列: n 的全階乘 (n!)

使用案例和好處

這個組合解決器非常適合:

  • 概率分析: 理解機會和事件的可能性
  • 統計分析: 探索樣本選擇和數據分佈
  • 描述性統計: 支持涉及均值和中位數的計算
  • 組合場景: 考試問題、遊戲設置或邏輯謎題
  • 教育支持: 非常適合學習排列和組合的運作方式

常見問題

問:組合和排列之間有什麼區別?

答: 組合專注於選擇,順序不重要(例如:從碗中選擇 3 顆水果),而排列專注於排列,順序重要(例如:將 3 名跑者分配到 3 個位置)。

問:什麼時候應該勾選「允許重複」框?

答: 如果項目可以選擇多次,例如抽取有放回的彈珠或形成數字代碼,則啟用重複。

問:如果我輸入的值太大怎麼辦?

答: 由於 JavaScript 的限制,計算器支持的輸入最大為 170。超過此範圍,結果將顯示為 ∞ 或使用科學記數法。

問:這個工具能幫助數據科學或統計作業嗎?

答: 是的。這是一個有用的統計計算器,可以幫助分析數據集、計算概率分佈或進行統計計算。

問:這與基本計算器有什麼不同?

答: 與標準計算器不同,這個計算器專門為 排列和組合 而設計,顯示逐步結果和階乘,並提供額外的視覺工具,如帕斯卡三角形。

結論

無論您是在學習概率、解決組合謎題,還是進行統計計算,nCr 組合計算器都能為您提供快速而清晰的答案。這是一個強大且易於使用的組合解決器和排列公式工具。現在就試試,讓您的計算更快、更簡單、更具洞察力。